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Supplementary Figures

Supplementary Figure 1: Differentially abundant metabolites in IBD. 2,729 metabolite
features were differentially abundant in IBD (UC and/or CD) relative to controls as determined
by a linear model controlling for subject age and medication use (see main Methods). Samples
(subjects) were clustered by Bray-Curtis similarity and then grouped by diagnosis. This ordering
of subjects is used in all other heatmap figures. A subpopulation of UC subjects (clustered
toward the left) more closely resembled non-IBD controls. These subjects also tended to have
more control-like levels of inflammation, as measured by fecal calprotectin level. Rows
(metabolite features) were clustered by Spearman correlation, then grouped by trend with IBD.
Units are “parts per million (PPM)” derived from sum-normalizing metabolomic features
intensities within each LC-MS method.
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Supplementary Figure 2: Differentially abundant species in IBD. 50 microbial species were
differentially abundant in IBD (UC and/or CD) relative to controls as determined by a linear
model controlling for subject age and medication use. Samples (subjects) were ordered to
match the metabolite-based ordering from Supplementary Fig. 1. Rows (species) were clustered

by Spearman correlation, then grouped by trend with IBD. Units are

(fraction out of 1.0).
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Supplementary Figure 3:

IBD

is associated with decreases

in metabolomic and

taxonomic diversity. Panels A and B replicate Fig. 1, panels B and C from the main text.
Panels C and D compare the first axes of ordination in A and B with subjects’ metabolomic and
taxonomic Shannon diversity scores, respectively. The metabolomic diversity correlation in C is
weak but statistically significant (Spearman’s r=-0.321, two-tailed p<10*, n=155), while the
taxonomic diversity correlation in D is considerably stronger (r=-0.572, p<10™**, n=155).
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Supplementary Figure 4: Disease localization induces minimal structure on CD subjects’
multi’omic profiles. This figure is an analog of Fig. 1, panels B and C from the main text.
Samples are ordinated in the same manner, but now colored according to disease localization
among CD patients. We confirmed the lack of a significant influence of localization on between-
subject distances using permutational analysis of variance (n=68, Bray-Curtis distance; p=0.22

for metabolites; p=0.35 for species).
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Supplementary Figure 5: Differentially abundant metabolite cluster #3. Differentially
abundant metabolite features were clustered (by Spearman correlation) after regressing out the
effects of disease, age, and medication use. Clusters were selected with a target intra-cluster
similarity r=0.7. Clusters tended to be homogeneous with respect to IBD trend, and were often
enriched for metabolite features of particular functional classes. Samples (subjects) were
ordered to match the metabolite-based ordering from Supplementary Fig. 1. Rows (metabolite
features) were clustered by Spearman correlation, then grouped by trend with IBD. Units are
“parts per million (PPM)” derived from sum-normalizing metabolomic features intensities within
each LC-MS method. Metabolite features are labeled if they were precisely matched against a
standard (a “*” indicates a match to one of a group of isomers that could not be differentiated).
Cluster #3 was enriched in health, and contained a large number of triacylglycerols.
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Supplementary Figure 6: Differentially abundant metabolite cluster #13. This figure follows
the format of Supplementary Fig. 5 above. Cluster #13 was enriched in CD, and contained a
large number of organonitrogen compounds, including metabolite features matched against the
standard linoleoyl ethanolamide and its chemical derivatives.
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Supplementary Figure 7: Differentially abundant metabolite clusters #23 and #25. This
figure follows the format of Supplementary Fig. 5 above. Clusters #23 (top) and #25 (bottom)
were enriched in CD and UC, and contained long-chain fatty acids, including metabolite features
matched against the standards arachidonic acid and docosapentaenoic acid and their
derivatives.
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Supplementary Figure 8: Putative mechanistic associations between differentially
abundant metabolites and species (expanded view). We identified correlations between
species and metabolite features that were individually differentially abundant in IBD. We
performed Spearman correlation on abundance data after regressing out the effects of disease,
subject age, and medication use. This initial set of correlations was subjected to correction for
multiple hypothesis testing (specifically, FDR correction of nominal two-tailed p-values with
target g<0.05). In addition, FDR-significant correlations were filtered to remove associations that
were not also 1) nominally significant and 2) of the same sign when considering only raw values
from control subjects. This procedure enriches for species-metabolite associations that occur in
healthy individuals and which are potentially perturbed in IBD. The figure illustrates the space of
correlations between species and metabolite features that were involved in at least one of these
putatively mechanistic associations. Note that the majority of associations are concordant with
IBD trend (e.g. species and metabolites that are both enriched in IBD tend to correlate
positively).
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Supplementary Figure 9. Validation of eight predicted metabolite-microbe relationships.
We selected eight putative associations between IBD-linked metabolites and the IBD-enriched
species Ruminococcus gnavus for experimental validation (four negative and four positive).
Negatively associated metabolites are predicted to inhibit growth, while positively associated
metabolites are predicted to enhance growth. We grew Ruminococcus gnavus ATCC 29149
anaerobically in the presence of different concentrations of the indicated metabolites or DMSO
control and monitored growth (optical density, OD, at 600 nm) over a 24-hour period. Growth
curves representative of two independent tests are shown. Error bars in controls and treated
wells represent average + standard deviation of six and three technical replicates, respectively.

Three of the eight observed relationships matched expectations.
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Supplementary Figure 10: Differentially abundant enzymes in IBD. 564 enzymes were
differentially abundant IBD (UC and/or CD) relative to controls as determined by a linear model
controlling for subject age and medication use. Here, “enzyme” refers to a level-4 category from
the Enzyme Commission (EC) hierarchy. Enzymes were quantified by regrouping the
abundance of individual protein sequences according to their EC annotations. Samples
(subjects) were ordered to match the metabolite-based ordering from Supplementary Fig. 1.
Rows (enzymes) were clustered by Spearman correlation, then grouped by trend with IBD.
Units are “parts (enzyme copies) per million (PPM)”; here, these units account for the mass of
metagenomic reads that did map to any protein sequence, as well as protein sequences lacking
EC annotations. Enzymes are colored according to their dominant contributed species, where
applicable, with “dominating” defined as “contributing >50% of copies in >50% of samples.”
Many of the enzymes that are elevated in IBD can be attributed largely to increased levels of E.
coli in that population.
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Supplementary Figure 11: Putative mechanistic associations between differentially
abundant metabolites and enzymes. This figure is an analog of Fig. 4 from the main text
(which compared species and metabolites). We identified FDR-significant (q<0.05) associations
between clustered DA metabolite features and DA enzymes after regressing out variation due to
phenotype, age, and medication use (open dots). We selected associations that were also
nominally significant among raw control values (filled dots). Here we show the space of

metabolite-enzyme correlations

involving metabolites matched against standards and

characterized species. Spearman’s r was used to measure all correlations and all nominal p-
values were two-tailed.
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Supplementary Figure 12: The majority of IBD-associated trends replicate (in sign) in an
independent validation cohort. Each panel compares a set of linear modeling results for a
particular test (UC vs non-IBD control or CD vs. non-IBD control) across a particular feature
type (metabolite features or microbial species). Plotted values represent the signed, logi-scaled
g-values of the coefficient following FDR correction. Hence, a large positive value represents a
highly significant, positive coefficient (corresponding to a feature that was consistently enriched
in IBD relative to controls). Horizontal (x) values reflect results from the discovery (PRISM)
cohort (n=155), and vertical (y) values reflect results from the validation (Netherlands) cohort
(n=65). Dotted lines represent the threshold for FDR-significance (g=0.05). Comparisons that
were not significant in the discovery cohort are not plotted (hence there are no points between
the vertical dotted lines). The vast majority of trends replicated in sign (positive or negative)
between the two cohorts (blue points). FDR significance was replicated less often due in part to
reduced statistical power in the validation cohort.
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Supplementary Figure 13: Classification of IBD status is considerably better than
random. This figure expands on Fig. 6A from the main text. Specifically, each training/testing
experiment was repeated on 50 permutations of the sample labels. ROC curves from
permutation trials are shown in light gray. As expected, the permutation AUC values are
centered on 0.5 (random performance), and the true ROC curves (red, blue, and violet lines) fall
well outside the permutation “band” (consistent with strong, non-random performance).
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